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Peri-implant gingiva such as that of 
teeth should provide a protective 
barrier against microbial plaque. 
Recent work has indicated a need 
for keratinized gingiva of adequate 
width and thickness to reduce 
peri-implant soft tissue recession 
and bone loss.1–3 Gingival tissues 
surrounding the necks of teeth 
and implants have similarities, 
with both consisting of a stratified 
squamous keratinized epithelium 
secured by hemi-desmosomes 
overlying a dense, collagenous 
lamina propria.4–6 These soft tissue 
components must be of minimum 
thickness or “biologic width” to 
avoid an accommodating degree 
of crestal bone loss.7–9 The differ-
ence around implants compared 
with teeth is that with the latter, 
collagen fibers insert directly into 
cementum as Sharpey fibers, more 
or less perpendicular to root sur-
faces.10 In contrast, collagen fi-
bers of peri-implant lamina propria 
present as a fibrous capsule with 
fibers oriented parallel and circum-
ferential to the implant surface.11

Collar segments (eg, the por-
tion of the implant root immedi-
ately apical to the microgap of 
two-piece implants) traditionally 
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This paper summarizes current knowledge on the benefits of laser-
ablated microgrooves in neck regions of endosseous dental implants. 
Like machine-tooled coronal microthreads with particle-blasted surfaces, 
laser-ablated microgrooves help to preserve crestal bone. However, 
they also appear to uniquely favor a true gingival connective tissue 
attachment comparable to that of natural teeth. (Int J Periodontics 
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had machine-turned surfaces to 
accommodate “biologic width.” 
However, recently, manufactur-
ers have moved toward providing 
moderate surface roughness on 
implant collars, and this approach 
has had variable outcomes. One 
promising collar surface treatment 
has been the creation of micro-
grooves by laser ablation. This de-
sign feature appears to promote a 
more tooth-like gingival collagen 
fiber attachment.12 The aim of this 
paper was to review existing litera-
ture supporting the use of laser mi-
crogrooves on implant collars. 

Method and materials

A literature search of publications 
in refereed journals in the English 
language from 1990 to July 2011 
was performed using the National 
Library of Medicine and SCOPUS 
Cochrane Oral Health Group da-
tabases. Additional papers from 
reference lists of identified pa-
pers, but preceding 1990, were 

also reviewed. Relevant references 
were selected on the basis of titles 
and abstracts, but final selections 
were based on full-text review in-
dependently by the two authors. 
The search strategy included a 
specific series of terms and key 
words including: biologic width, 
crestal bone, implant collar, tissue 
engineering, surface topography, 
connective tissue contact, laser ab-
lation, microgrooves, and dental 
implants, with different key words 
connected with “OR” and “AND.” 
Relevant publications included in 
vitro experiments, finite element 
analyses, animal studies, and hu-
man clinical, radiographic, and his-
tologic studies.

Results

Laser treatment can be used to 
create precise circumferential mi-
crogrooves in neck segments of 
dental implants as a result of lo-
calized heating resulting in metal 
vaporization, localized melting, 

and rapid resolidification (Figs 1a 
and 1b). This type of microgeom-
etry has been shown to have direc-
tional effects on fibroblasts both 
in vitro and in vivo. Ricci et al13 
reported that cultured fibroblasts 
grown on microgrooved polysty-
rene surfaces vapor-deposited with 
titanium oxide became oriented or 
channeled (“contact guidance”) in 
line with the grooves. In compari-
son, cells grown on nongrooved 
surfaces showed random growth.  
Groove widths of 6 to 12 µm ap-
peared to work best.14 Dumas et 
al15 reported that laser-ablated 
microgrooves created on titanium 
alloy (Ti-6Al-4V) also had 600-nm 
nanostructures promoting orient-
ed cell filipodial contact and fibrin 
fibril orientation in vitro. This mod-
erate level of surface roughness 
(Fig 2) is not unlike that seen with 
other surface treatments such as 
acid etching.16,17   

Fig 1a    Low-power image of an implant 
with laser-etched microgrooves on its collar 
segment. A higher-power magnification 
of the area marked with the rectangle is 
shown in Fig 1b. 

Fig 1b    Laser-etched microgrooves 
(original magnification ×200). 
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Animal studies with laser-
treated implants

Weiner et al18 used dogs to exam-
ine the responses of bone, connec-
tive tissue, and epithelium to laser 
microtextured collars on particle-
blasted, threaded implants. Collar 
length was 2 mm prepared with 
three distinct zones. The deepest 
0.8-mm zone had laser-ablated 
microgrooves of 12 µm width and  
10 ± 3 µm depth. A middle 0.7-mm 
zone width had microgrooves of 
8 µm width and 4 ± 1 µm depth, 
while the uppermost 0.5-mm zone 
was machine-turned. Control im-
plants had fully machine-turned 
collars. Histometric data were pre-
pared for loaded and unloaded 
implants after 3 or 6 months. At 
3 months, unloaded test implants 
showed bone or soft tissue on the 
microgrooves depending on the 
characteristics of contacting tis-
sue. Machined-collar surfaces of 
unloaded control implants showed 
only soft tissue contact. For loaded 
test implants, the machine-turned 

0.5 mm of collar showed primarily 
epithelial contact, while laser mi-
crogrooves showed soft connec-
tive tissue attachment coronally 
and bone more apically. Machine-
turned collars of loaded control 
implants showed mostly soft tis-
sue contact and some crestal bone 
saucerization. 

Nevins et al19 used dogs to 
study healing with 8-µm-wide 
laser-ablated microgrooves on 
implant abutments rather than 
on implant collars. All implants 
were threaded with particle-blast-
ed surfaces, and four implant/ 
abutment combinations were 
studied. Group A consisted of fully 
particle-blasted implants, ie, with-
out a machine-turned collar (MTC).  
Their abutments had an apical (ie, 
immediately coronal to implant-
abutment microgap) 0.7-mm-wide  
zone of laser microgrooves. Group 
B implants had a 0.3-mm-wide 
MTC and abutments identical to 
group A. Group C implants had 
fully particle-blasted surfaces and 
fully machine-turned abutments, 

while group D had a 0.3-mm MTC  
and fully machine-turned abut-
ments. All abutments were in-
stalled at the time of implant 
placement. Specimens were re-
trieved en bloc after 3 months. 
Histologic, high-resolution micro-
computed tomography (micro-CT) 
and scanning electron microscope 
(SEM) observations of groups A 
and B demonstrated connective 
tissue fiber attachment oriented 
perpendicular to the abutment 
microgrooves. Apical migration of 
junctional epithelium (JE) was in-
hibited, and crestal bone loss was 
prevented by the laser-treated 
zone. In group A, bone growth 
into the microgap and onto the 
microgrooves was seen in some 
specimens. A more or less similar 
outcome was seen in group B. In 
group C, the formation of a long JE 
along the abutment and particle-
blasted collar prevented oriented 
connective tissue attachment. A 
similar outcome was seen in group 
D with the addition of some crestal 
bone loss adjacent to the MTC. 

Fig 2a    Laser-etched microgrooves (G) 
(original magnification ×1,000). 

Fig 2b    Laser-etched microgrooves 
(original magnification ×5,000). A ladder-
like smooth-edged nanostructure can be 
seen in the grooves (G) themselves, while 
the intergroove ridges have a knobby 
appearance indicative of melting and 
resolidification with smooth edges and 
some undercuts. 
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Kim et al20 used dogs to study 
early tissue responses for three dif-
ferent one-piece implant systems 
having different profiles and sur-
face features on transmucosal seg-
ments. One group of implants (FM) 
had a flared, machine-turned, trans-
mucosal segment (TMS). A second 
group (CMG) had a concave TMS 
shape and machine-turned surface, 
but with the addition of machine-
tooled microgrooves of 30-µm 
width in the most apical zone. The 
third group (SA) had a straight 
TMS with an anodic oxidized sur-
face (Ti-Unite, NobelDirect im-
plant, Nobel Biocare). A total of 
30 implants (10 of each type) were 
placed randomly in dog mandibles 
Specimens were retrieved en bloc 
after 6 months of nonfunctional, 
nonsubmerged healing. Histomet-
ric analysis showed that the CMG 
design was superior to the other 
designs since the machine-tooled, 
microgrooved zone allowed the 
greatest connective tissue contact 
(CTC) with less bone resorption. 
Whether CTC was oriented parallel 
or oblique to the microgrooves was 
not specified, but it is unlikely that 
oriented fiber attachment occurred 
since this has never been reported 
for machined implant surfaces.8  

Human studies

Several investigators have report-
ed clinical performance of dental 
implants with laser microgrooves 
on their collar segments. Nevins 
et al12 did a histologic proof-of- 
principle study with Laser-Lok 
implants (Biohorizons). Implants 

had collars with three distinct sur-
face treatments. The most apical 
0.8 mm of collar had laser micro-
grooves of 12 µm width and 12 µm  
depth. An intermediate 0.7-mm 
zone had microgrooves of 8 µm 
width, 6 µm depth, while the 
coronal-most 0.5-mm zone was 
machine-turned. Four implants 
were retrieved en bloc from four 
patients after 6 months nonsub-
merged healing. Prepared speci-
mens were examined by light 
microscopy including polarized 
light, micro-CT, and SEM. Results 
showed the laser microgrooves to 
be covered with functionally ori-
ented collagen fibers with preven-
tion of apical epithelial migration 
and no crestal bone loss. This was 
in contrast to machined abutment 
surfaces where oriented collagen 
fibers did not extend to or attach 
to the metal surface, being sepa-
rated from it by a 200-µm-thick 
layer of parallel oriented fibers.21  

Nevins et al22 later presented 
polarized light histologic data 
from two patients to support their 
canine data showing an oriented 
gingival fiber attachment to heal-
ing abutments with laser micro-
grooves. Geurs et al23 reported a 
similar outcome with laser-treated 
healing abutments examined by 
polarized light and SEM microsco-
py. Finally, Nevins et al24 presented 
polarized light histologic evidence 
from one patient that oriented gin-
gival fibers that had developed 
in relation to laser-ablated micro-
grooves on a healing abutment 
can reattach to microgrooves on 
definitive prosthetic abutments. 
This reattachment of gingival fibers 

to the prosthetic abutment was ap-
parently achieved without crestal 
bone loss. 

Pecora et al25 provided pro-
spective, controlled data for a 
group of 15 patients and 20 pairs 
of Laser-Lok (LL) and control im-
plants. Both implant models were 
tapered, threaded, and particle-
blasted. Test implants had 2-mm 
collars on which the most apical 
0.8 mm had laser microgrooves 
(12 µm width, 10 µm depth). An in-
termediate 0.7-mm zone had laser 
microgrooves of 8 µm width and  
5 µm depth, and a coronal 0.5-mm 
zone was machine-turned. Con-
trol implants had fully machine-
turned collars. During 37 months 
of clinical monitoring, LL implants 
showed significantly less pock-
et probing depth than controls, 
while at 7 months and later, they 
also showed less crestal bone loss 
(0.59 mm vs 1.94 mm). Similar re-
sults were presented by Botos et 
al,26 who used Laser-Lok as test 
and Nobel Select (Nobel Biocare) 
as control implants, the latter hav-
ing fully machined collars. Fifteen 
edentulous patients each received 
two of each implant type in the an-
terior mandible. One of each type 
was loaded immediately by sup-
porting ball-retained overdentures, 
while the remaining two implants 
in each patient acted as nonloaded 
controls. Pocket probing depths 
and crestal bone loss for loaded 
LL implants were both significantly 
less than with controls at 6 and 12 
months (eg, 0.72 mm vs 1.13 mm 
bone loss at 12 months). Bone 
loss was also less for nonloaded LL  
implants. 
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The radiographic data for 
bone loss with LL implants present-
ed by Pecora et al25 and Botos et 
al26 were similar to earlier noncon-
trolled retrospective data for 49 LL  
implants.27 After 2 and 3 years in 
function, crestal bone loss values 
were 0.44 mm and 0.46 mm, re-
spectively, and all bone loss was 
contained to the machined collars. 
These outcomes support findings 
from finite element analyses com-
paring stresses predicted following 
axial and side loading of implants 
having laser-treated versus ma-
chine-turned collars.28 Laser-treat-
ed collars were predicted to exhibit 
significantly lower peak stresses on 
crestal bone (22.6 MPa for laser vs 
91.9 MPa for machine-turned). 

Discussion 

Endosseous dental implants ini-
tially had machine-turned collar 
surfaces, and this typically led to 
crestal bone dieback to the level 
of the first implant thread.29–31 
However, short threaded implants 
may have greater crestal bone loss 
than longer ones, and bone loss is 
almost always greater in smokers 
than nonsmokers.32 Investigators 
have further shown that coronal 
machine-tooled microthreads33,34 
and/or platform switching35,36 can 
reduce crestal bone loss signifi-
cantly, in both cases likely due to 
changes in bone stresses.37,38 Im-
plants with crestal machine-tooled 
microthreads also have moderately 

rough surfaces over their entire 
lengths, including the microthread-
ed segment (Fig 3), but retention of 
crestal bone is not likely due to this 
roughness. Lee et al33 performed a 
human study comparing implants 
with and without microthreads, 
both having particle-blasted sur-
faces. Those without microthreads 
showed significantly greater bone 
loss. Likewise, comparison of im-
plants with moderately rough-sur-
faced microthreads with implants 
having the Ti-Unite surface (thick-
ened surface oxide layer), an-
other moderately rough surface 
texture, but without microthreads 
showed the latter to suffer signifi-
cantly greater bone loss at 1 year 
(0.81 mm vs 0.42 mm).39 As well, 

Fig 3a    Titanium oxide–blasted implant in 
the microthreaded collar region (original 
magnification ×200). 

Fig 3b    A higher-power (original mag-
nification ×1,000) image of the blasted 
surface in the microthreaded region. 

Fig 3c    The same sample as in Fig 3b, but 
magnified at ×5,000. 
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implants without coronal micro
threads but with the same sur-
face roughness (particle-blasted)  
on their nonthreaded collar seg-
ment resulted in crestal bone loss 
similar to that seen with traditional 
fully machine-turned collars.40,41 
All of these observations could be 
interpreted to mean that a micro-
threaded geometry is more im-
portant in retaining crestal bone 
than moderate surface roughness. 
However, comparison between im-
plant designs with coronal micro
threads, but one design with and 
one without a moderately rough 
collar surface, has not to the au-
thors’ knowledge been done. 
Nevertheless, manufacturers have 
moved to producing implants 
without coronal microthreads but 
with moderately rough surfaces 
in their neck regions, and clinical 
performance has not always been 
good. Aalam and Nowzari31 report-
ed greater crestal bone loss with  

Ti-Unite surfaced implants than 
with fully machine-turned implants, 
although the differences were not 
significant. 

However, the NobelDirect im-
plant (Nobel Biocare), a one-piece 
implant with a Ti-Unite surface and 
without microthreads, showed un-
acceptably high failure rates due 
to progressive bone loss.42 On the 
other hand, fully acid-etched two-
piece implants with more or less 
the same surface roughness as Ti-
Unite43 and again without micro-
threads had no negative impact 
on crestal bone compared to the 
same implants without acid-etched 
surfaces on their collars and first 
three threads. Nevertheless, un-
like laser-ablated surfaces, parti-
cle-blasted and/or acid-washed 
or Ti-Unite surfaces do not elicit 
functionally oriented gingival at-
tachment to their roughened necks 
regardless of whether they have 
microthreads.19,45–49 This is an inter-

esting observation that may relate 
to the fact that laser microgrooves 
are an order of magnitude smaller 
in dimension than machine-tooled 
microthreads (Fig 4). As well, sur-
face nanotopographies differ sub-
stantially (compare for example 
the images in Figs 2c and 3c). The 
nanotopography of laser-ablated 
surfaces is more pronounced, hav-
ing knobs with rounded edges and 
some undercuts. In contrast, blast-
ed surfaces on machine-tooled 
microthreads show random nano-
roughness and somewhat sharp 
edges. Nano features have been 
shown by others to influence fi-
broblast behavior and strength of 
adhesion through filopodial sens-
ing,15,50,51 and one might specu-
late that nanosize surface features 
created by laser have the ability 
to allow fibroblasts to form a true 
connective tissue attachment to ti-
tanium implants.   

Fig 4a    This SEM image shows the 
particle-blasted microthreaded region of an 
Astra Tech implant at ×50 magnification. 

Fig 4b    This SEM image shows 
laser-ablated microgrooves (original 
magnification ×500). Comparing this 
image to Fig 4a, one can appreciate 
the difference in dimensions (an order 
of magnitude smaller) compared to 
microtooled, particle-blasted  
microthreads.
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Conclusions

Dental implants with laser-ablated 
coronal microgrooves or particle-
blasted machine-tooled micro-
threads reduce peri-implant crestal 
bone loss compared to implants 
with fully machine-turned or par-
ticle-blasted (without the addition 
of microthreads) collar segments. 
However, unlike machine-tooled 
microthreads, laser microgrooves 
appear to inhibit apical migration of 
crevicular epithelium and  promote 
true attachment of peri-implant 
gingiva. Since both treatments re-
sult in similar surface roughness, 
the difference in response of con-
nective tissue may relate to differ-
ences in nanotopography and the 
fact that laser microgrooves are 
an order of magnitude smaller in 
dimension than machine-tooled 
microthreads. 

It can be speculated that for-
mation of a connective tissue– 
implant collar interface more like 
that of a natural tooth will improve 
long-term performance of dental 
implants. However, randomized, 
controlled, prospective trials com-
paring implants with laser-treated 
collars to those with moderately 
rough coronal microthreads, in-
cluding accurate measurements 
of crestal bone loss over at least 5 
years of clinical service, are required 
to investigate this hypothesis. 
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